Functional Properties of a Newly Identified C-terminal Splice Variant of Cav1.3 L-type Ca2+ Channels*
نویسندگان
چکیده
An intramolecular interaction between a distal (DCRD) and a proximal regulatory domain (PCRD) within the C terminus of long Ca(v)1.3 L-type Ca(2+) channels (Ca(v)1.3(L)) is a major determinant of their voltage- and Ca(2+)-dependent gating kinetics. Removal of these regulatory domains by alternative splicing generates Ca(v)1.3(42A) channels that activate at a more negative voltage range and exhibit more pronounced Ca(2+)-dependent inactivation. Here we describe the discovery of a novel short splice variant (Ca(v)1.3(43S)) that is expressed at high levels in the brain but not in the heart. It lacks the DCRD but, in contrast to Ca(v)1.3(42A), still contains PCRD. When expressed together with α2δ1 and β3 subunits in tsA-201 cells, Ca(v)1.3(43S) also activated at more negative voltages like Ca(v)1.3(42A) but Ca(2+)-dependent inactivation was less pronounced. Single channel recordings revealed much higher channel open probabilities for both short splice variants as compared with Ca(v)1.3(L). The presence of the proximal C terminus in Ca(v)1.3(43S) channels preserved their modulation by distal C terminus-containing Ca(v)1.3- and Ca(v)1.2-derived C-terminal peptides. Removal of the C-terminal modulation by alternative splicing also induced a faster decay of Ca(2+) influx during electrical activities mimicking trains of neuronal action potentials. Our findings extend the spectrum of functionally diverse Ca(v)1.3 L-type channels produced by tissue-specific alternative splicing. This diversity may help to fine tune Ca(2+) channel signaling and, in the case of short variants lacking a functional C-terminal modulation, prevent excessive Ca(2+) accumulation during burst firing in neurons. This may be especially important in neurons that are affected by Ca(2+)-induced neurodegenerative processes.
منابع مشابه
Identification of a new C-terminal splice variant of CaV1.3 L-type calcium channels with unique functional properties
Background In L-type voltage-gated calcium channels (VGCCs) the long C-terminal tail contains several sites for modulation by protein-protein interaction. CaV1.3 VGCCs (CaV1.3L) activate at negative voltages and support sinoatrial node pacemaking and hearing, and shape neuronal excitability. In CaV1.3L an intermolecular automodulatory C-terminal interaction (CTM) has been described which affect...
متن کاملAssociation of CaV1.3 L-type calcium channels with Shank.
Neurons express multiple types of voltage-gated calcium (Ca2+) channels. Two subtypes of neuronal L-type Ca2+ channels are encoded by CaV1.2 and CaV1.3 pore-forming subunits. Both CaV1.2 and CaV1.3 subunits contain class I PDZ (postsynaptic density-95/Discs large/zona occludens-1) domain-binding consensus at their C termini. In yeast two-hybrid screen of rat brain cDNA library with the C-termin...
متن کاملErbin Enhances Voltage-Dependent Facilitation of Cav1.3 Ca Channels through Relief of an Autoinhibitory Domain in the Cav1.3 1 Subunit
Cav1.3 (L-type) voltage-gated Ca 2 channels have emerged as key players controlling Ca 2 signals at excitatory synapses. Compared with the more widely expressed Cav1.2 L-type channel, relatively little is known about the mechanisms that regulate Cav1.3 channels. Here, we describe a new role for the PSD-95 (postsynaptic density-95)/Discs large/ZO-1 (zona occludens-1) (PDZ) domain-containing prot...
متن کاملC-Terminal Alternative Splicing of CaV1.3 Channels Distinctively Modulates Their Dihydropyridine Sensitivity s
The transcripts of L-type voltage-gated calcium channels (CaV) 1.3 undergo extensive alternative splicing. Alternative splicing, particularly in the C terminus, drastically modifies gating properties of the channel. However, little is known about whether alternative splicing could modulate the pharmacologic properties of CaV1.3 in a manner similar to the paralogous CaV1.2. Here we undertook the...
متن کاملC-terminal alternative splicing of CaV1.3 channels distinctively modulates their dihydropyridine sensitivity.
The transcripts of L-type voltage-gated calcium channels (CaV) 1.3 undergo extensive alternative splicing. Alternative splicing, particularly in the C terminus, drastically modifies gating properties of the channel. However, little is known about whether alternative splicing could modulate the pharmacologic properties of CaV1.3 in a manner similar to the paralogous CaV1.2. Here we undertook the...
متن کامل